Unifying and generalizing known lower bounds via geometric complexity theory
نویسنده
چکیده
We show that most arithmetic circuit lower bounds and relations between lower bounds naturally fit into the representation-theoretic framework suggested by geometric complexity theory (GCT), including: the partial derivatives technique (Nisan–Wigderson), the results of Razborov and Smolensky on AC[p], multilinear formula and circuit size lower bounds (Raz et al.), the degree bound (Strassen, Baur–Strassen), the connected components technique (Ben-Or), depth 3 arithmetic circuit lower bounds over finite fields (Grigoriev–Karpinski), lower bounds on permanent versus determinant (Mignon–Ressayre, Landsberg–Manivel–Ressayre), lower bounds on matrix multiplication (Bürgisser–Ikenmeyer) (these last two were already known to fit into GCT), the chasms at depth 3 and 4 (Gupta–Kayal–Kamath–Saptharishi; Agrawal–Vinay; Koiran), matrix rigidity (Valiant) and others. That is, the original proofs, with what is often just a little extra work, already provide representation-theoretic obstructions in the sense of GCT for their respective lower bounds. This enables us to expose a new viewpoint on GCT, whereby it is a natural unification and broad generalization of known results. It also shows that the framework of GCT is at least as powerful as known methods, and gives many new proofs-of-concept that GCT can indeed provide significant asymptotic lower bounds. This new viewpoint also opens up the possibility of fruitful two-way interactions between previous results and the new methods of GCT; we provide several concrete suggestions of such interactions. For example, the representation-theoretic viewpoint of GCT naturally provides new properties to consider in the search for new lower bounds.
منابع مشابه
Lower Bounds for Approximating Graph Parameters via Communication Complexity
In a celebrated work, Blais, Brody, and Matulef [5] developed a technique for proving property testing lower bounds via reductions from communication complexity. Their work focused on testing properties of functions, and yielded new lower bounds as well as simplified analyses of known lower bounds. Here, we take a further step in generalizing the methodology of [5] to analyze the query complexi...
متن کاملTowards an algebraic natural proofs barrier via polynomial identity testing
We observe that a certain kind of algebraic proof—which covers essentially all known algebraic circuit lower bounds to date—cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov–Rudich natural proofs barrier in Boolean circuit complexity, in that we rule out a large class of lower bound techniques under ...
متن کاملGeometric complexity theory and matrix powering
Valiant’s famous determinant versus permanent problem is the flagship problem in algebraic complexity theory. Mulmuley and Sohoni (Siam J Comput 2001, 2008) introduced geometric complexity theory, an approach to study this and related problems via algebraic geometry and representation theory. Their approach works by multiplying the permanent polynomial with a high power of a linear form (a proc...
متن کاملNeighborhood Spanners of Minimal Outdegree 1
A geometric spanner with vertex set P IRD is a sparse approximation of the complete Euclidean graph determined by P. We introduce the notion of partitioned neighborhood graphs (PNGs), unifying and generalizing most constructions of spanners treated in literature. Two important parameters characterizing their properties are the outdegree k 2 IN and the stretch factor f > 1 describing the ‘qualit...
متن کاملBracketing numbers for axis-parallel boxes and applications to geometric discrepancy
In the first part of this paper we derive lower bounds and constructive upper bounds for the bracketing numbers of anchored and unanchored axis-parallel boxes in the d-dimensional unit cube. In the second part we apply these results to geometric discrepancy. We derive upper bounds for the inverse of the star and the extreme discrepancy with explicitly given small constants and an optimal depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.6333 شماره
صفحات -
تاریخ انتشار 2013